Tetrahedron Letters, Vol.27, No.4, pp 411-414, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

CONFIGURATIONAL CHARACTERIZATION OF THE 1-(TRIMETHYLSILYL)CYCLOPROPYL RADICAL

Leo A. Paquette* and Manfred Hoppe

Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210

Linda J. Johnston¹ and Keith U. Ingold*

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada K1A OR6

Summary: Reductive debromination of 1-bromo-1-(trimethylsilyl)cyclopropane-1-¹³C produced the labeled radical, the EPR spectrum of which showed $a^{13}C\alpha = 40.9$ G, $a^{H_{\beta}}(4H) = 27.0$ G, and q = 2.00228, thereby confirming it to be planar, or nearly so.

Although a great deal of interest surrounds the stereochemistry and reactivity of cyclopropyl radicals,² preparation of the first α -silyl derivative was reported only recently.³ In this study, application of the Hunsdiecker reaction to optically pure (-)-(R)-1 yielded the racemic bromide 3. Failure of the intervening radical to maintain configuration contrasts with the nonracemizability of its carbanion analogue, reactions of which proceeded with complete retention of stereochemistry.³ At least under these circum-

stances, therefore, the α -Me₃Si substituent is clearly unable to stabilize pyramidal character and the intermediate is most reasonably described as having effectively planar geometry (viz., 2).

However, large groups positioned at C-2 (and C-3) are recognized to be capable of

411

inducing the "flattening" of radical centers contained in three-membered rings. For example, whereas the 2,2-dimethylcyclopropyl radical is non-planar at C-1,⁴ 2,2-di-*tert*butyl-3,3-difluorocyclopropyl is planar.⁵ Even relatively small 2-substituents may well exert steric influences adequate to reduce the inversion barrier relative to that for the parent radical.⁶ The phenomenon is also seen with vinyl radicals, $(Me_3Si)_2C=CSiMe_3$ being uniquely linear because of steric influences.⁷

Consequently, a reliable analysis of the α -SiMe₃ effect demands that the otherwise unsubstituted α -(trimethylsilyl)cyclopropyl radical be examined to determine if it is planar or not. The best technique for elucidating this point is measurement of the α -¹³C hfs by EPR spectroscopy. Since it was considered unlikely that this parameter could be identified in natural abundance, a suitable isotopically labeled substrate was prepared.

Spiroalkylation of ¹³C-malonic ester (99.5% isotopic purity) with 1,2-dibromoethane under phase transfer conditions⁸ provided diacid 4. Double Hunsdiecker degradation of 4 conveniently furnished dibromide 5.⁹ Sequential metalation-silylation leading to 6 was achieved with *n*-butyllithium and chlorotrimethylsilane in anhydrous ether at -105°C.¹⁰ Compound 6 was dissolved in a 1:1 mixture of triethylsilane and di-*tert*-butyl peroxide and photolyzed directly in the cavity of a Varian E-104 EPR spectrometer at -70°C. The solvent mixture provided triethylsilyl radicals which abstracted bromine from 6 to yield the radical 7 : $a^{13}C_{\alpha} = 40.9$ G, $a^{H_{\beta}}(4H) = 27.0$ G, and g = 2.00228.

There can be no doubt that 7 is much more nearly planar than cyclopropyl and l-methylcyclopropyl radicals for which we have found¹¹ $a^{3}C_{\alpha} \approx 96$ and 98 G, respectively.¹² It is also probably more planar than the 2,2-di-tert-butyl-1,3,3-trifluorocyclopropyl radical for which $a^{13}C_{\alpha} = 51.5$ G ⁵ However, we believe that 7 may not be precisely planar, i.e., out-of-plane motion of the Me₃Si group is more probably governed by a double rather than by a single potential energy minimum function. We come to this conclusion because the Me₃Si group in a truly planar 7 would be expected to reduce $a = \alpha^{13}$ to a value even lower than the 38 G found for the planar methyl radical. For example, the $a^{13}C_{\alpha}$ values for "planar" $(Me_3Si)_3C^{\circ}$ and $(Me_3Si)_2CHC(SiMe_3)_2$ are ~ 26 G¹³ and 26.4 G.¹⁴ respectively. Similarly, the "linear" (Me₃Si)₂C=CSiMe₃ radical has α = 28.1 G,⁷ whereas the "bent" Me₃Si(CF₃)C=CSiMe₃ and Me₃Si(CC1₃)C=CSiMe₃ radicals have $a^{1^{3}C_{\alpha}} = 47.7$ and 69.2 G, respectively.⁷ We presume that the near planarity of 1-trimethylsilylcyclopropyl is a consequence of $d_{\pi} - p_{\pi}$ overlap or its equivalent.^{15,16} Contributions of this type would have the net effect of favoring π radical status² and facilitating loss of configuration. They should also impart to 7 a certain kinetic stability relative to the cyclopropyl radical. Such would appear to be the case. Thus, the rate constant for H-atom abstraction by 7 from 1,4-cyclohexadiene at room temperature, viz, 1,2 x 10⁶ M^{-1} s⁻¹, is appreciably smaller than the value previously reported for the cyclopropyl radical, $viz.^{17}$ 7.9 x 10⁶ M^{-1} s⁻¹. Of course, some of this rate difference may be due to steric rather than to electronic factors.

Acknowledgment. The work at The Ohio State University was made possible by the financial support of the National Science Foundation (Grant CHE-8317954).

References and Notes

- (1) NSERC Postdoctoral Fellow 1983-84.
- (2) Walborsky, H. M. Tetrahedron 1981, 37, 1625.
- (3) Paquette, L. A.; Uchida, T.; Gallucci, J. C. J. Am. Chem. Soc. 1984, 106, 335.

- (4) (a) Kawamura, T.; Tsumura, M.; Yonezawa, T. J. Chem. Soc., Chem. Commun. 1977, 373.
 (b) Kawamura, T.; Tsumura, M.; Yonezawa, T. J. Am. Chem. Soc. 1977, 99, 8251.
- (5) Malatesta, V.; Forrest, D.; Ingold K. U. J. Am. Chem. Soc. 1978, 100, 7073.
- (6) (a) Ishira, T.; Ohtani, E.; Ando, T. J. Chem. Soc., Chem. Common. 1975, 367. (b)
 Ando, T.; Ishihara, T.; Ohtani, E.; Sawada, H. J. Org. Chem. 1981, 46, 4446.
- (7) Griller, D.; Cooper, J. W.; Ingold, K. U. J. Am. Chem. Soc. 1975, 97, 4269.
- (8) Singh, R. K.; Danishefsky, S. J. Org. Chem. 1975, 40, 2969; Org. Synth. 1981, 60, 66.
- (9) Blankenship, C.; Paquette, L. A. Synth. Common. 1984, 14, 983.
- (10) Paquette, L. A.; Wells, G. J.; Horn, K. A.; Yan, T.-Y. Tetrahedron 1983, 39, 913.
- (11) Johnston, L. J.; Ingold, K. U. J. Am. Chem. Soc. in press.
- (12) At 27.0 G the $\alpha^{H_{\beta}}$ (4H) for 7 is appreciably larger than the values of 23.5 G and 19.5 G found for cyclopropyl and 1-methylcyclopropyl radicals,¹¹ which also argues strongly in favor of 7 being more planar than the other two radicals.
- Bassindale, A. R.; Bowles, A. J.; Cook, M. A.; Eaborn, C.; Hudson, A.; Jackson, R. A.; Jukes, A. E. J. Chem. Soc., Chem. Commun. 1970, 559.
- (14) Scalano, J. C.; Ingold, K. U. J. Phys. Chem. 1976, 80, 275.
- (15) (a) Pitt, C. G. J. Organometal. Chem. 1973, 61, 49. (b) Ensslin, W.; Bock, H.; Becker, G. J. Am. Chem. Soc. 1974, 96, 2757. (c) Jung, I. N.; Jones, P. R. J. Organometal. Chem. 1975, 101, 27, 35. (d) Ponec, R.; Chernyshev, E. A.; Tolstikova, N. G.; Chvalovsky, V. Collect. Czech. Chem. Commun. 1976, 41, 2714.
 (e) Reynolds, W. F.; Hamer, G. K.; Bassindale, A. R. J. Chem. Soc., Perkin Trans. 2 1977, 971. (f) Ramsey, B. G. J. Organometal. Chem. 1977, 135, 307. (g) Adcock, W.; Aldous, G. L.; Kitching, W. Tetrahedron Lett. 1978, 3387.
- (16) (a) Fleming, I. in "Comprehensive Organic Chemistry"; Barton, D. H. R., Ollis, W.
 D., Eds.; Pergamon Press: Oxford, 1979; Vol. 3, Chapter 13. (b) Colvin, E. W.
 "Silicon in Organic Synthesis"; Butterworths: London, 1981.
- (17) Johnston, L. J.; Scaiano, J. C.; Ingold, K. U. J. Am. Chem. Soc. 1984, 106, 4877.
 (Received in USA 21 October 1985)